An updated review on the application of proteomics to explore sperm cryoinjury mechanisms in livestock animals

Anim Reprod Sci. 2024 Feb 21;263:107441. doi: 10.1016/j.anireprosci.2024.107441. Online ahead of print.ABSTRACTThis comprehensive review critically examines the application of proteomics in understanding sperm cryoinjury mechanisms in livestock animals, in the context of the widespread use of semen cryopreservation for genetic conservation. Despite its global adoption, cryopreservation often detrimentally affects sperm quality and fertility due to cryoinjuries. These injuries primarily arise from ice crystal formation, osmotic shifts, oxidative stress, and the reorganization of membrane proteins and lipids during freezing and thawing, leading to premature capacitation-like changes. Moreover, the cryopreservation process induces proteome remodeling in mammalian sperm. Although there have been technological advances in semen cryopreservation, the precise mechanisms of mammalian sperm cryoinjury remain elusive. This review offers an in-depth exploration of how recent advancements in proteomic technologies have enabled a detailed investigation into these molecular disruptions. It presents an analysis of protein-level alterations post-thaw and their impact on sperm viability and functionality. Additionally, it discusses the role of proteomics in refining cryopreservation techniques to mitigate cryoinjury and enhance reproductive outcomes in livestock. This work synthesizes current knowledge, highlights gaps, and suggests directions for future research in animal reproductive scienc...
Source: Animal Reproduction Science - Category: Zoology Authors: Source Type: research