Development of magnetic La doped Al < sub > 2 < /sub > O < sub > 3 < /sub > core-shell nanoparticle loaded hydrogel for selective recovery of fluoride from aquatic medium

Chemosphere. 2024 Feb 23:141504. doi: 10.1016/j.chemosphere.2024.141504. Online ahead of print.ABSTRACTThe selective removal of pollutants from water bodies is regarded as a conciliation between the rapid expansion of industrial activities and need of clean water for sustainability. Fluoride is one such geogenic pollutant, and various materials have already been reported. Developing an efficient field employable material is however a challenge. Herein, we report the synthesis and competencies of strategically designed magnetic La-doped Al2O3 core-shell nanoparticle loaded polymeric nanohybrid as a benchmark fluoride sorbent. A facile synthesis strategy involved fabrication of Fe3O4 magnetic core followed by growth of La doped Al2O3 shell using sol-gel method. Doping of La2O3 into Al2O3 structure was optimised (6%), resulting in Fe3O4-Al0.94 La0.06O1.5 core-shell particles which provided exceptional fluoride affinity. The obtained magnetic Fe3O4-Al0.94La0.06O1.5 core-shell nanoparticles were then loaded (22%) into alginate to form cross-linked hydrogel beads (Fe3O4-Al0.94 La0.06 O1.5-Ca-ALG). These prepared hydrogel beads were characterised and utilized for selective recovery of fluoride under different ambient conditions. Driving forces for enhanced fluoride uptake by La doped Al2O3 were investigated and explained with the help of both experimental observation and theoretical simulation. Density functional theory calculations indicated significant expansion in the cell volume...
Source: Chemosphere - Category: Chemistry Authors: Source Type: research