Improvement of the functional properties of insoluble dietary fiber from corn bran by ultrasonic-microwave synergistic modification

Ultrason Sonochem. 2024 Feb 21;104:106817. doi: 10.1016/j.ultsonch.2024.106817. Online ahead of print.ABSTRACTA comprehensive investigation aimed to access the impacts of ultrasonic, microwave, and ultrasonic-microwave synergistic modification on the physicochemical properties, microstructure, and functional properties of corn bran insoluble dietary fiber (CBIDF). Our findings revealed that CBIDF presented a porous structure with loose folds, and the particle size and relative crystallinity were slightly decreased after modification. The CBIDF, which was modified by ultrasound-microwave synergistic treatment, exhibited remarkable benefits in terms of its adsorption capacity, and cholate adsorption capacity. Furthermore, the modification improved the in vitro hypoglycemic activity of the CBIDF by enhancing glucose absorption, retarding the starch hydrolysis, and facilitating the diffusion of glucose solution. The findings from the in vitro probiotic activity indicate that ultrasound-microwave synergistic modification also enhances the growth-promoting ability and adsorbability of Lactobacillus acidophilus and Bifidobacterium longum. Additionally, the level of soluble dietary fiber was found to be positively correlated with CBIDF adsorbability, while the crystallinity of CBIDF showed a negative correlation with α-glucosidase and α-amylase inhibition activity, as well as water-holding capacity, and oil-holding capacity.PMID:38394824 | DOI:10.1016/j.ultsonch.2024.106817
Source: Ultrasonics Sonochemistry - Category: Chemistry Authors: Source Type: research