Aptamer Targeting the ERBB2 Receptor Tyrosine Kinase for Applications in Tumor Therapy

Aptamers are an emerging class of molecules in cancer therapy. They can be easily synthesized and are considered cost-effective drug candidates. In this book chapter we describe the selection and characterization of DNA aptamers specific to the human epidermal growth factor receptor 2 (ERBB2/HER2), an oncogenic tyrosine kinase. First, a DNA aptamer library is applied and ERBB2-specific aptamers are selected using SELEX. Binders are subcloned into a pGEM-T vector, sequenced, and characterized using biochemical and cell biological techniques. By multimerizing the selected ERBB2 aptamers, it might be possible to significantly increase their avidity. For example, we could show that a trimeric ERBB2-specific aptamer could efficiently internalize membranal ERBB2. Furthermore, the receptor assembled in cytoplasmic puncta and was finally degraded by the lysosome. In addition, the selected, trimeric aptamer inhibited proliferation in an XTT assay in comparison to a control sequence. Aptamers selected using the protocol we describe might exert anticancer effect. In our example of a trimeric anti-HER2 aptamer, we could report that a human gastric xenograft mouse model demonstrated pharmacological value of the selected aptamer in vivo. This chapter should enable the interested reader to replicate selection of DNA aptamers specific to oncogenic cell surface. We would like to particularly emphasize some experimental approaches which were used to further characterize selected aptamer sequen...
Source: Springer protocols feed by Cancer Research - Category: Cancer & Oncology Source Type: news