Forskolin Enhances Antitumor Effect of Oncolytic Measles Virus by Promoting Rab27a Dependent Vesicular Transport System

Curr Microbiol. 2024 Feb 9;81(4):93. doi: 10.1007/s00284-024-03613-z.ABSTRACTThe measles vaccine virus strain (MV-Edm) serves as a potential platform for the development of effective oncolytic vectors. Nevertheless, despite promising pre-clinical data, our comprehension of the factors influencing the efficacy of MV-Edm infection and intratumoral spread, as well as the interactions between oncolytic viruses and specific chemotherapeutics associated with viral infection, remains limited. Therefore, we investigated the potency of Forskolin in enhancing the antitumor effect of oncolytic MV-Edm by promoting the Rab27a-dependent vesicular transport system. After infecting cells with MV-Edm, we observed an increased accumulation of cytoplasmic vesicles. Our study demonstrated that MV-Edm infection and spread in tumors, which are indispensable processes for viral oncolysis, depend on the vesicular transport system of tumor cells. Although tumor cells displayed a responsive mechanism to restrain the MV-Edm spread by down-regulating the expression of Rab27a, a key member of the vesicle transport system, over-expression of Rab27a promoted the oncolytic efficacy of MV-Edm towards A549 tumor cells. Additionally, we found that Forskolin, a Rab27a agonist, was capable of promoting the oncolytic effect of MV-Edm in vitro. Our study revealed that the vesicle transporter Rab27a could facilitate the secretion of MV-Edm and the generation of syncytial bodies in MV-Edm infected cells during the M...
Source: Current Microbiology - Category: Microbiology Authors: Source Type: research