In vivo behavior in rabbit radius bone defect of scaffolds based on nanocarbonate hydroxyapatite

In this study, we studied the bone-inducing capacity of nCHA-based scaffolds alone (SAG) and enriched with osteostatin (SAGO) or with bone marrow aspirate(SAGB) after implantation for 12  weeks in a 15-mm long critical defect performed in the radius of New Zealand rabbits. Bone formation obtained was compared with a group with the unfilled defect (CE), as control group, and other with the defect filed with iliac crest autograft (GS), as gold standard. X-ray follow-up was performed at 2, 4, 6 and 12 weeks and μCT and histological studies at 12 weeks. The radiological results showed a greater increment in bone formation in the GS group (75%–100%), followed by the SAG and SAGB groups (50%–75%). μCT results showed an increase of bone volume/tissue volume values in GS g roup followed by SAG and SAGB groups (0.53, 0.40, and 0.31 respectively) compared with CE group (0.26). Histological results showed limited resorption of the nCHA scaffolds and partial osseointegration in the SAG and SAGB groups. However, in the SAGO group, the presence of connective tissue encapsul ating the scaffold was detected. In SAG, SAGB, and increase of bone formation were observed compared with CE group, but less than the GS group. Thus, the investigated materials represent a significant advance in the design of synthetic materials for bone grafting, but further studies are needed to b ring their in vivo behavior closer to autograft, the gold standard.
Source: Journal of Biomedical Materials Research Part B: Applied Biomaterials - Category: Materials Science Authors: Tags: RESEARCH ARTICLE Source Type: research