Signal Intensity Trajectories Clustering for Liver Vasculature Segmentation and Labeling (LiVaS) on Contrast-Enhanced MR Images: A Feasibility Pilot Study

This study aims to develop a semiautomated pipeline and user interface (LiVaS) for rapid segmentation and labeling of MRI liver vasculature and evaluate its time efficiency and accuracy against manual reference standard. Retrospective feasibility pilot study. Liver MR images from different scanners from 36 patients were included, and 4/36 patients were randomly selected for manual segmentation as referenced standard. The liver was segmented in each contrast phase and masks registered to the pre-contrast segmentation. Voxel-wise signal trajectories were clustered using the k-means algorithm. Voxel clusters that best segment the liver vessels were selected and labeled by three independent radiologists and a research scientist using LiVaS. Segmentation times were compared using a paired-samplet-test on log-transformed data. The agreement was analyzed qualitatively and quantitatively using DSC for hepatic and portal vein segmentations. The mean segmentation time among four readers was significantly shorter than manual (3.6  ± 1.4 vs. 70.0 ± 29.2 min;p <  0.001), even when using a higher number of clusters to enhance accuracy. The DSC for portal and hepatic veins reached up to 0.69 and 0.70, respectively. LiVaS segmentations were overall of good quality, with variations in performance related to the presence/severity of liver disease, acquisition timing, and image quality. Our semi-automated pipeline was robust to different MRI vendors in producing segmentation a...
Source: Journal of Digital Imaging - Category: Radiology Source Type: research