Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From fMRI

Predicting individual behavior from brain imaging data using machine learning is a rapidly growing field in neuroscience. Functional connectivity (FC), which captures interactions between different brain regions, contains valuable information about the organization of the brain and is considered a crucial feature for modeling human behavior. Graph convolutional networks (GCN) have proven to be a powerful tool for extracting graph structure features and have shown promising results in various FC-based classification tasks, such as disease classification and prognosis prediction. Despite this success, few behavior prediction models currently exist based on GCN, and their performance is not satisfactory. To address this gap, a new model called the Multi-Scale FC-based Multi-Order GCN (MSFC-MO-GCN) was proposed in this paper. The model considers the hierarchical structure of the brain system and utilizes FCs inferred from multiple spatial scales as input to comprehensively characterize individual brain organization. To enhance the feature learning ability of GCN, a multi-order graph convolutional layer is incorporated, which uses multi-order neighbors to guide message passing and learns high-order graph information of nodal connections. Additionally, an inter-subject contrast constraint is designed to control the potential information redundancy of FCs among different spatial scales during the feature learning process. Experimental evaluation were conducted on the publicly availa...
Source: IEE Transactions on Neural Systems and Rehabilitation Engineering - Category: Neuroscience Source Type: research