Causal relationship of gut microbiota and metabolites on cognitive performance: A mendelian randomization analysis

Neurobiol Dis. 2023 Dec 28;191:106395. doi: 10.1016/j.nbd.2023.106395. Online ahead of print.ABSTRACTEmerging evidence has indicated that the alterations in gut microbiota and metabolites are associated with cognitive performance. However, whether these associations imply a causal relationship remains to be definitively established. Here, we conducted two-sample mendelian randomization (MR) studies to explore the causal effects of gut microbiota and metabolites on cognitive performance, using large-scale genome-wide association studies (GWASs). We identified seven positive causalities between host genetic-driven gut microbiota and cognitive performance, including Class Clostridia (p = 0.0002), Order Clostridiales (p = 8.12E-05), Family Rhodospirillaceae (p = 0.042) and Ruminococcustorquesgroup (p = 0.030), Dialister (p = 0.027), Paraprevotella (p = 0.037) and RuminococcaceaeUCG003 (p = 0.007) at the genus level. Additionally, a total of four higher abundance of gut microbiota traits were identified to be negatively related to cognitive performance, including genus Blautia (p = 0.013), LachnospiraceaeFCS020group (p = 0.035), LachnospiraceaeNK4A136group (p = 0.034) and Roseburia (p = 0.00016). In terms of plasma metabolites, we discovered eight positive and six negative relationships between genetic liability in metabolites and cognitive performance (all p < 0.05). No evidence was detected across a series of sensitivity analyses, including pleiotropy and heterogeneity. Colle...
Source: Neurobiology of Disease - Category: Neurology Authors: Source Type: research
More News: Brain | Genetics | Men | Neurology | Study