A system dynamics model and analytical hierarchy process: an integrated approach for achieving sustainable solid waste management system

Environ Sci Pollut Res Int. 2023 Dec 29. doi: 10.1007/s11356-023-31534-0. Online ahead of print.ABSTRACTWaste management in low-income countries faces challenges with an average cost of $35/ton approximately 51% collection efficiency. Despite investments in treatment, processing, and recycling, the system remains unsustainable owing to poor planning and policies. The current analysis of Lahore's solid waste management (SWM) system, selected as a major city of a low-income country as a case study, focuses on collection efficiency and waste generation. However, it neglects the complex and dynamic nature of SWM systems. To capture the complexities and dynamic nature of the SWM system, system dynamic (SD) modeling is proposed for its effectiveness in modeling complex and dynamic systems. Unlike previous attempts at SD modeling that mostly consider only some components of the SWM system with varying success, this study attempts to use a holistic approach by considering all aspects of an integrated SWM system. In addition, this study explores different financial and management policies, highlighting the weaknesses of the system through a quantitative comparison of three scenarios: (1) business-as-usual (BAU) which considers the current trends in waste generation and practices of collection and disposal to landfill, (2) waste treatment system (WTS) in which various waste treatment systems are included to reduce burden on landfill, and (3) introduction of user fee with awareness camp...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research