Impact of heat stress on genetic evaluation of oocyte and embryo production in Gir dairy cattle

AbstractIdentifying and selecting genotypes tolerant to heat stress might improve reproductive traits in dairy cattle, including oocyte and embryo production. The temperature-humidity index (THI) was used, via random regression models, to investigate the impact of heat stress on genetic parameters and breeding values of oocyte and embryo production in Gir dairy cattle. We evaluated records of total oocytes (TO), viable oocytes (VO), cleaved embryos (CE), and viable embryos (VE) from dairy Gir donors. Twenty-four models were tested, considering age at ovum pick-up (AOPU) and THI means as a regressor in the genetic evaluation. We computed THI in eight periods, from 0 to 112  days before ovum pick-up, which were adjusted by different orders of Legendre polynomials (second, third, and fourth). The best-fit model according to Akaike’s information criterion (AIC) and Model Posterior Probabilities (MPP) considered Legendre polynomials of third order and THI means of 112  days for TO, fourth order and 56 days for VO, second order and 28 days for CE, and second order and 42 days for VE, respectively. The heritability (h2) estimates across AOPU and THI scales ranged from 0.34 to 0.62 for TO, 0.31 to 0.58 for VO, 0.26 to 0.39 for CE, and 0.15 to 0.26 for VE, respectively. The fraction of the phenotypic variance explained by the permanent environment in different AOPU and THI scales ranged from 0.03 to 0.25 for TO, 0.05 to 0.26 for VO, 0.09 to 0.36 for CE, and 0.15 to 0.27 for VE,...
Source: Tropical Animal Health and Production - Category: Veterinary Research Source Type: research