Discovery of the first unconventional myosin: < em > Acanthamoeba < /em > myosin-I

Front Physiol. 2023 Nov 17;14:1324623. doi: 10.3389/fphys.2023.1324623. eCollection 2023.ABSTRACTHaving characterized actin from Acanthamoeba castellanii (Weihing and Korn, Biochemistry, 1971, 10, 590-600) and knowing that myosin had been isolated from the slime mold Physarum (Hatano and Tazawa, Biochim. Biophys. Acta, 1968, 154, 507-519; Adelman and Taylor, Biochemistry, 1969, 8, 4976-4988), we set out in 1969 to find myosin in Acanthamoeba. We used K-EDTA-ATPase activity to assay myosin, because it is a unique feature of muscle myosins. After slightly less than 3 years, we purified a K-EDTA ATPase that interacted with actin. Actin filaments stimulated the Mg-ATPase activity of the crude enzyme, but this was lost with further purification. Recombining fractions from the column where this activity was lost revealed a "cofactor" that allowed actin filaments to stimulate the Mg-ATPase of the purified enzyme. The small size of the heavy chain and physical properties of the purified myosin were unprecedented, so many were skeptical, assuming that our myosin was a proteolytic fragment of a larger myosin similar to muscle or Physarum myosin. Subsequently our laboratories confirmed that Acanthamoeba myosin-I is a novel unconventional myosin that interacts with membrane lipids (Adams and Pollard, Nature, 1989, 340 (6234), 565-568) and that the cofactor is a myosin heavy chain kinase (Maruta and Korn, J. Biol. Chem., 1977, 252, 8329-8332). Phylogenetic analysis (Odronitz and Kollmar, ...
Source: Biochimica et Biophysica Acta - Category: Biochemistry Authors: Source Type: research