GSE248490 Decoupling NAD+ metabolic dependency in chondrosarcoma by targeting the SIRT1 –HIF-2α axis

Contributors : Jooyeon Suh ; Hyeonkyeong Kim ; Jin-Hong Kim ; Yi-Jun KimSeries Type : Expression profiling by high throughput sequencingOrganism : Homo sapiensChondrosarcomas represent the second most common primary bone malignancy. Despite the vulnerability of chondrosarcoma cells to nicotinamide adenine dinucleotide (NAD+) depletion, targeting the NAD+ synthesis pathway remains challenging due to broad implications in biological processes. Here, we establish SIRT1 as a central mediator reinforcing the dependency of chondrosarcoma cells on NAD+ metabolism via HIF-2 α-mediated transcriptional reprogramming. SIRT1 knockdown abolishes aggressive phenotypes of chondrosarcomas in orthotopically transplanted tumors in mice. Chondrosarcoma cells thrive under glucose starvation by accumulating NAD+ and subsequently activating the SIRT1–HIF-2α axis. Decoupling this link via SIRT1 inhibition unleashes apoptosis and suppresses tumor progression in conjunction with chemotherapy. Unsupervised clustering analysis identifies a high-risk chondrosarcoma patient subgroup characterized by the upregulation of NAD+ biosynthesis genes. Finally, SIRT1 inhibition abolishes HIF-2α transcriptional activity and sensitizes chondrosarcoma cells to doxorubicin-induced cytotoxicity, irrespective of underlying pathways to accumulate intracellular NAD+. We provide system-level guidelines to develop therapeutic strategies for chondrosarcomas.  
Source: GEO: Gene Expression Omnibus - Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Homo sapiens Source Type: research