Flexible and Scalable Dry Conductive Elastomeric Nanocomposites for Surface Stimulation Applications

Conclusion: Flexatrode provides stable electrical properties combined with high flexibility and elasticity. Electrotherapy treated chronic wounds were 81.9% smaller than baseline at day 10. Wounds that received an inactive device (device without any electrical stimulation) were 58.1% smaller than baseline and wounds that received standard of care treatment were 62.2% smaller than baseline. Significance: The increasing need for wearable bioelectronics requiring long-term monitoring/treatment has highlighted the limitations of sustained use of gel-based electrodes. These can include skin irritation, bacterial overgrowth at the electrode site, gel dehydration over time, and signal degradation due to eccrine sweat formation. Flexatrode provides stable performance in a nanocomposite with scalable fabrication, thus providing a promising platform technology for wearable bioelectronics.
Source: IEEE Transactions on Biomedical Engineering - Category: Biomedical Engineering Source Type: research