Decoding the impacts of contributory factors and addressing social disparities in crash frequency analysis

This study provides a framework to spatially examine the relationships between crash rates and demographic and socioeconomic characteristics, as well as roadway infrastructure and traffic characteristics at the Census Block Groups (CBGs) level. Spatial autocorrelation analysis was first performed on the residual of the Ordinary Least Squares (OLS) model to identify whether non-stationarity exists. Then, the Geographically Weighted Regression (GWR) model and the Multiscale Geographically Weighted Regression (MGWR) model were applied to assess the impacts of these factors on crash rates spatially and statistically. Our findings indicate that MGWR outperforms both OLS and GWR in uncovering the spatial relationships between contributing factors and both fatal and injury (FI) crashes as well as property damage only (PDO) crashes. A thorough examination of local coefficient maps highlighted six pivotal variables that significantly influenced a majority of CBGs. Improving infrastructure, including pedestrian pathways and public transit facilities, in low-income areas can offer significant benefits. These findings and recommendations can inform the development of effective strategies for reducing crashes and guide the appropriate selection of modeling techniques for macro-level crash analysis.PMID:37956504 | DOI:10.1016/j.aap.2023.107375
Source: Accident; Analysis and Prevention. - Category: Accident Prevention Authors: Source Type: research