A joint parcellation and boundary network with multi-rate-shared dilated graph attention for cortical surface parcellation

AbstractCortical surface parcellation aims to segment the surface into anatomically and functionally significant regions, which are crucial for diagnosing and treating numerous neurological diseases. However, existing methods generally ignore the difficulty in learning labeling patterns of boundaries, hindering the performance of parcellation. To this end, this paper proposes a joint parcellation and boundary network (JPBNet) to promote the effectiveness of cortical surface parcellation. Its core is developing a multi-rate-shared dilated graph attention (MDGA) module and incorporating boundary learning into the parcellation process. The former, in particular, constructs a dilated graph attention strategy, extending the dilated convolution from regular data to irregular graph data. We fuse it with different dilated rates to extract context information in various scales by devising a shared graph attention layer. After that, a boundary enhancement module and a parcellation enhancement module based on graph attention mechanisms are built in each layer, forcing MDGA to capture informative and valuable features for boundary detection and parcellation tasks. Integrating MDGA, the boundary enhancement module, and the parcellation enhancement module at each layer to supervise boundary and parcellation information, an effective JPBNet is formed by stacking multiple layers. Experiments on the public dataset reveal that the proposed method outperforms comparison methods and performs wel...
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research