Integrative single-cell analysis reveals distinct adaptive immune signatures in the cutaneous lesions of pemphigus

J Autoimmun. 2023 Nov 6;142:103128. doi: 10.1016/j.jaut.2023.103128. Online ahead of print.ABSTRACTPemphigus, an autoimmune bullous disease affecting the skin and mucosal membranes, is primarily driven by anti-desmoglein (Dsg) autoantibodies. However, the underlying immune mechanisms of this disease remain largely elusive. Here, we compile an unbiased atlas of immune cells in pemphigus cutaneous lesions at single-cell resolution. We reveal clonally expanded antibody-secreting cells (ASCs) that exhibit variable hypermutation and accumulation of IgG4 class-switching in their immunoglobulin genes. Importantly, pathogenic Dsg-specific ASCs are localized within pemphigus lesions and can evolve from both Dsg-autoreactive and non-binding precursors. We observe an altered distribution of CD4+ T cell subsets within pemphigus lesions, including an imbalance of Th17/Th2 cells. Significantly, we identify a distinct subpopulation of Th17 cells expressing CXCL13 and IL-21 within pemphigus lesions, implying its pivotal role in B cell recruitment and local production of autoantibodies. Furthermore, we characterize multiple clonally expanded CD8+ subpopulations, including effector GMZB+ and GMZK+ subsets with augmented cytotoxic activities, within pemphigus lesions. Chemokine-receptor mapping uncovers cell-type-specific signaling programs involved in the recruitment of T/B cells within pemphigus lesions. Our findings significantly contribute to advancing the understanding of the heterogeneous...
Source: Journal of Autoimmunity - Category: Allergy & Immunology Authors: Source Type: research