Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals

Int J Neural Syst. 2023 Nov;33(11):2350055. doi: 10.1142/S0129065723500557.ABSTRACTAutomated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, Multi-view Graph Contrastive Learning via Adaptive Channel Optimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map re...
Source: International Journal of Neural Systems - Category: Neurology Authors: Source Type: research