Bioinspired Adhesive Antibacterial Hydrogel with Self-Healing and On-Demand Removability for Enhanced Full-Thickness Skin Wound Repair

Biomacromolecules. 2023 Oct 6. doi: 10.1021/acs.biomac.3c00576. Online ahead of print.ABSTRACTAdhesive-caused injury is a great threat for extensive full-thickness skin trauma because extra-strong adhesion can incur unbearable pain and exacerbate trauma upon removal. Herein, inspired by the mussel, we designed and fabricated an adhesive antibacterial hydrogel dressing based on dynamic host-guest interaction that enabled on-demand stimuli-triggered removal to effectively care for wounds. In contrast with most hard-to-removable dressing, this adhesive antibacterial hydrogel exhibited strong adhesion property (85 kPa), which could achieve painless and noninvasive on-demand separation within 2 s through a host-guest competition mechanism (amantadine). At the same time, the hydrogel exhibited rapid self-healing properties, and the broken hydrogel could be completely repaired within 5 min. The hydrogel also had excellent protein adsorption properties, mechanical properties, antibacterial properties, and biocompatibility. This on-demand removal was facilitated by the introduction of amantadine as a competitive guest, without any significant adverse effects on cell activity (>90%) or wound healing (98.5%) in vitro. The full-thickness rat-skin defect model and histomorphological evaluation showed that the hydrogel could significantly promote wound healing and reduce scar formation by regulating inflammation, accelerating skin re-epithelialization, and promoting granulation tissue f...
Source: Biomacromolecules - Category: Biochemistry Authors: Source Type: research