Molecules, Vol. 28, Pages 6762: N-Acetylcysteine Displaces Glutathionyl-Moieties from Hg2+ and MeHg+ to Form More Hydrophobic Complexes at Near-Physiological Conditions

Molecules, Vol. 28, Pages 6762: N-Acetylcysteine Displaces Glutathionyl-Moieties from Hg2+ and MeHg+ to Form More Hydrophobic Complexes at Near-Physiological Conditions Molecules doi: 10.3390/molecules28196762 Authors: Maryam Doroudian Michelle E. Thibault Jürgen Gailer The anthropogenic release of Hg is associated with an increased human exposure risk. Since Hg2+ and MeHg+ have a high affinity for thiols, their interaction with L-glutathione (GSH) within mammalian cells is fundamentally involved in their toxicological chemistry and excretion. To gain insight into the interaction of these mercurials with multiple small molecular weight thiols, we have investigated their competitive interactions with GSH and N-acetylcysteine (NAC) at near-physiological conditions, using a liquid chromatographic approach. This approach involved the injection of each mercurial onto a reversed-phase (RP)-HPLC column (37 °C) using a PBS buffer mobile phase containing 5.0 mM GSH to simulate cytosolic conditions with Hg being detected in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). When the 5.0 mM GSH mobile phase was amended with up to 10 mM NAC, gradually increasing retention times of both mercurials were observed. To explain this behavior, the experiment with 5.0 mM NAC and 5.0 mM GSH was replicated using 50 mM Tris buffer (pH 7.4), and the Hg-containing fractions were analyzed by electrospray ionization mass spectrometry. T...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research