Chitosan-based nanopesticides enhanced anti-fungal activity against strawberry anthracnose as "sugar-coated bombs"

Int J Biol Macromol. 2023 Sep 19:126947. doi: 10.1016/j.ijbiomac.2023.126947. Online ahead of print.ABSTRACTA chitosan-based nanoparticle was prepared using chitosan (CS) and O-carboxymethyl chitosan (O-CMCS). Our study revealed that chitosan/O-carboxymethyl chitosan/tebuconazole nanoparticles (CS/O-CMCS/TBA NPs) exhibited superior antifungal activity, foliar adhesion, and microbial target adhesion performance compared to commercial suspension concentrate (SC). The antifungal activity of CS/O-CMCS/TBA NPs against C. gloeosporioides, with a 3.13-fold increase in efficacy over TBA (SC). We also found that low concentrations of CS/O-CMCS NPs promoted the growth of C. gloeosporioides and enhanced the fungal catabolism of chitosan. Overall, the CS/O-CMCS/TBA NPs were found to possess the remarkable capability to selectively aggregate around pathogenic microorganisms and CS/O-CMCS NPs can enhance the fungal catabolism of chitosan. CS/O-CMCS/TBA NPs, as a "sugar-coated bomb", was a promising asset for effective plant disease management and pesticide utilization through the affinity of chitosan-based nanoparticles and C. gloeosporioides, enabling targeted delivery and targeted release of their encapsulated active ingredient, which was important for the development and application of biocompatible chitosan-based nanopesticides.PMID:37734523 | DOI:10.1016/j.ijbiomac.2023.126947
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Source Type: research