Neuronal mTORC1 inhibition promotes longevity without suppressing anabolic growth and reproduction in < i > C < /i > . < i > elegans < /i >

by Hannah J. Smith, Anne Lanjuin, Arpit Sharma, Aditi Prabhakar, Ewelina Nowak, Peter G. Stine, Rohan Sehgal, Klement Stojanovski, Benjamin D. Towbin, William B. Mair mTORC1 (mechanistic target of rapamycin complex 1) is a metabolic sensor that promotes growth when nutrients are abundant. Ubiquitous inhibition of mTORC1 extends lifespan in multiple organisms but also disrupts several anabolic processes resulting in stunted growth, slowed development, reduced fertility, and disrupted metabolism. However, it is unclear if these pleotropic effects of mTORC1 inhibition can be uncoupled from longevity. Here, we utilize the auxin-inducible degradation (AID) system to restrict mTORC1 inhibition toC.elegans neurons. We find that neuron-specific degradation of RAGA-1, an upstream activator of mTORC1, or LET-363, the ortholog of mammalian mTOR, is sufficient to extend lifespan inC.elegans. Unlikeraga-1 loss of function genetic mutations or somatic AID of RAGA-1, neuronal AID of RAGA-1 robustly extends lifespan without impairing body size, developmental rate, brood size, or neuronal function. Moreover, while degradation of RAGA-1 in all somatic tissues alters the expression of thousands of genes, demonstrating the widespread effects of mTORC1 inhibition, degradation of RAGA-1 in neurons only results in around 200 differentially expressed genes with a specific enrichment in metabolism and stress response. Notably, our work demonstrates that targeting mTORC1 specifically in the nervous s...
Source: PLoS Genetics - Category: Genetics & Stem Cells Authors: Source Type: research