Fine particulate matter promotes airway inflammation and mucin production by activating endoplasmic reticulum stress and the IRE1 α/NOD1/NF‑κB pathway

Int J Mol Med. 2023 Oct;52(4):96. doi: 10.3892/ijmm.2023.5299. Epub 2023 Sep 1.ABSTRACTFine particulate matter (PM2.5) is a type of small particle that is <2.5 µm in diameter that may cause airway inflammation. Thus, the present study aimed to explore the effects of PM2.5 on endoplasmic reticulum (ER) stress and airway inflammation in human airway epithelial cells. For this purpose, HBE135‑E6E7 airway epithelial cells were cultured and exposed to specific concentrations of PM2.5 for various periods of time, and cell viability was determined using a Cell Counting Kit‑8 assay. The results of the present study demonstrated that exposure to PM2.5 increased the mRNA and protein expression levels of interleukin (IL)‑6, tumor necrosis factor (TNF)‑α and mucin 5AC (MUC5AC). Moreover, the expression levels of ER stress‑related proteins, such as glucose‑regulated protein 78, CCAAT‑enhancer binding protein homologous protein, activating transcription factor 6, protein kinase R‑like ER kinase (PERK), phosphorylated (p‑)PERK, inositol‑requiring enzyme 1α (IRE1α) and p‑IRE1α, and nucleotide‑binding oligomerization domain 1 (NOD1) expression levels were increased following exposure to PM2.5. Transfection with IRE1α small interfering RNA (siRNA) led to the increased production of IL‑6, TNF‑α and MUC5AC. Moreover, the expression of NOD1 and the translocation of NF‑κB p65 were inhibited following transfection with IRE1α siRNA. In addition, the results ...
Source: International Journal of Molecular Medicine - Category: Molecular Biology Authors: Source Type: research