Structural insights on the deformations induced by various mutations on cholesteryl ester transfer protein

Biophys Chem. 2023 Aug 15;301:107093. doi: 10.1016/j.bpc.2023.107093. Online ahead of print.ABSTRACTCholesteryl Ester Transfer Protein (CETP) is a plasma glycoprotein that intervenes the reverse cholesterol transport (RCT) by equimolar exchange of Cholesteryl esters (CE) and Triglycerides (TGs) between anti-atherogenic High-Density Lipoproteins (HDLs) and pro-atherogenic Low-Density Lipoproteins (LDLs) resulting in the increased concentration of CEs in LDL. This is a potential cause for the formation of atherosclerotic plaques in blood vessels leading to fatality. Therefore, blocking the function of CETP has emerged as a novel strategy for suppressing atherosclerotic plaques. The crystal structure of CETP revealed two Cholesteryl esters (CEs) in the hydrophobic tunnel and two phospholipids (PLs) plugged on the concave surface. Previous lipid transfer assay experimental studies have shown a substantial reduction in the neutral lipid transfer in [R201S] and [I443W, V198W] mutants. However, the protein conformational arrangements due to the mutations present in the CETP system leading to a decrease in the transfer rate of neutral lipids is not explored. Thus, I explored the reason behind the decreased transfer rate in mutants using molecular dynamics (MD) simulations and free energy calculations. Resulting evidences show that R201S mutant induces unfavorable bending angle to CETP with a decreased binding efficiency between N-terminal phospholipid of CETP with S201. Also, an unfa...
Source: Biophysical Chemistry - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Cholesterol | Study