Ultra-sensitive photoelectrochemical biosensor for determination of African swine fever virus based on surface plasmon resonance

In this study, a bismuth induced enhanced photoelectrochemical (PEC) biosensor based on in-situ loop mediated isothermal amplification (LAMP) was constructed using deposited bismuth nanoparticles loaded bismuth oxycarbonate (Bi/(BiO)2CO3) as photoactive material, using primers designed according to LAMP as recognition elements, and using in-situ LAMP to achieve nucleic acid amplification of target genes. As the Bi induced surface plasmon resonance (SPR) effect, enhanced light captures and effective electron hole separation, it could effectively enhance the photoelectric activity, so the prepared Bi/(BiO)2CO3 nanohybrid had higher photocurrent intensity and good stability. The constructed PEC biosensor has realized the detection of ASFV in real samples with good sensitivity, specificity and repeatability. In the range from 1.0 × 10-13 to 1.0 × 10-7 g/L, the photoelectric current decreased with the increase of the concentration of ASFV, and the detection limit was 3.0 × 10-14 g/L (about 0.048 copies/μL). Combining the advantages of LAMP with the excellent performance of PEC, it provides a simple, economical and efficient method for nucleic acid diagnosis, and also provides a new idea for biosensor detection.PMID:37573117 | DOI:10.1016/j.aca.2023.341637
Source: Analytica Chimica Acta - Category: Chemistry Authors: Source Type: research