Energy constraint and compensation: Insights from endurance athletes

Comp Biochem Physiol A Mol Integr Physiol. 2023 Aug 7:111500. doi: 10.1016/j.cbpa.2023.111500. Online ahead of print.ABSTRACTThe Constrained Model of Total Energy Expenditure predicts that increased physical activity may not influence total energy expenditure, but instead, induces compensatory energetic savings in other processes. Much remains unknown, however, about concepts of energy expenditure, constraint and compensation in different populations, and it is unclear whether this model applies to endurance athletes, who expend very large amounts of energy during training and competition. Furthermore, it is well-established that some endurance athletes consciously or unconsciously fail to meet their energy requirements via adequate food intake, thus exacerbating the extent of energetic stress that they experience. Within this review we A) Describe unique characteristics of endurance athletes that render them a useful model to investigate energy constraints and compensations, B) Consider the factors that may combine to constrain activity and total energy expenditure, and C) Describe compensations that occur when activity energy expenditure is high and unmet by adequate energy intake. Our main conclusions are as follows: A) Higher activity levels, as observed in endurance athletes, may indeed increase total energy expenditure, albeit to a lesser degree than may be predicted by an additive model, given that some compensation is likely to occur; B) That while a range of factors ...
Source: Comparative Biochemistry and Physiology. Part A, Molecular and integrative physiology. - Category: Physiology Authors: Source Type: research