Systemic cytokines inhibition with Imp7 siRNA nanoparticle ameliorates gut injury in a mouse model of ventilator-induced lung injury

In this study, VILI was generated in mice with high tidal volume mechanical ventilation (20 ml/kg). Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 concentrations in serum and gut measured by ELISA showed significant elevation in the VILI mice. Significant increases in gut injury and PANoptosis were observed in the VILI mice, which were positively correlated with the serum levels of TNF-α, IL-1β, and IL-6. The VILI mice displayed intestinal barrier defects, decreased expressions of occludin and zonula occludin-1 (ZO-1), and increased expression of claudin-2 and the activation of myosin light chain (MLC). Importantly, intratracheal administration of Imp7 siRNA nanoparticle effectively inhibited cytokines production and protected mice from VILI-induced gut injury. These data provide evidence of systemic cytokines contributing to gut injury following VILI and highlight the possibility of targeting cytokines inhibition via Imp7 siRNA nanoparticle as a potential therapeutic intervention for alleviating gut injury following VILI.PMID:37516020 | DOI:10.1016/j.biopha.2023.115237
Source: Biomedicine and pharmacotherapy = Biomedecine and pharmacotherapie - Category: Drugs & Pharmacology Authors: Source Type: research