Quantitative proteomic analyses uncover regulatory roles of Nrf2 in human endothelial cells

Cell Stress Chaperones. 2023 Jul 25. doi: 10.1007/s12192-023-01366-5. Online ahead of print.ABSTRACTNuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional regulator, is the predominant factor in modulating oxidative stress and other cellular signaling responses. Studies from our lab and others highlighted that activation of the Nrf2 pathway by small molecules improves endothelial function by suppressing oxidative and endoplasmic reticulum (ER) stress. However, the exact mechanisms by which Nrf2 elicits these effects are unknown. In the present study, we developed CRISPR/Cas9-mediated Nrf2 knocked-out human endothelial cells, and proteomic signature was studied using LC-MS/MS. We identified 723 unique proteins, of which 361 proteins were found to be differentially regulated and further screened in the Nrf2ome online database, where we identified a highly interconnected signaling network in which 70 proteins directly interact with Nrf2. These proteins were found to regulate some key cellular and metabolic processes in the regulation actin cytoskeleton, ER stress, angiogenesis, inflammation, Hippo signaling pathway, and epidermal growth factor/fibroblast growth factor (EGF/FGF) signaling pathway. Our findings suggest the role of Nrf2 in maintaining endothelium integrity and its relationship with the crucial cellular processes which help develop novel therapeutics against endothelial dysfunction and its associated complications.PMID:37488350 | DOI:10.1007/s12192-02...
Source: Cell Stress and Chaperones - Category: Cytology Authors: Source Type: research