An integrated overview of metals contamination, source-specific risks investigation in coal mining vicinity soils

AbstractHeavy metals in soil are harmful to natural biodiversity and human health, and it is difficult to estimate the effects accurately. To reduce pollution and manage risk in coal-mining regions, it is essential to evaluate risks for heavy metals in soil. The present study reviews the levels of 21 metals (Nb, Zr, Ag, Ni, Na, K, Mg, Rb, Zn, Ca, Sr, As, Cr, Fe, Pb, Cd, Co, Hg, Cu, Mn and Ti) in soils around Barapukuria coal-mining vicinity, Bangladesh which were reported in literature. An integrated approach for risk assessments with the positive matrix factorization (PMF) model, source-oriented ecological and health hazards were applied for the study. The contents of Rb, Ca, Zn, Pb, As, Ti, Mn, Co, Ag, Zr, and Nb were 1.63, 1.10, 1.97, 14.12, 1.20, 3.13, 1.22, 3.05, 3.85, 5.48, and 7.21 times greater than shale value. About 37%, 67%, 12%, and 85% of sampling sites posed higher risks according to the modified contamination factor, Nemerow pollution index, Nemerow integrated risk index, and mean effect range median quotient, respectively. Five probable metal sources were computed, including industrial activities to coal mining (17%), agricultural activities (33%), atmospheric deposition (19%), traffic emission (16%), and natural sources (15%). Modified Nemerow integrated risk index reported that agricultural activities, industrial coal mining activities, and atmospheric deposition showed moderate risk. Health hazards revealed that cancer risk values computed by the PMF-HHR mo...
Source: Environmental Geochemistry and Health - Category: Environmental Health Source Type: research