Molecular Descriptors and QSAR Models for Sedative Activity of Sesquiterpenes Administered to Mice via Inhalation

Planta Med DOI: 10.1055/a-1770-7581Essential oils are often utilized for therapeutic purposes and are composed of complex structural molecules, including sesquiterpenes, with high molecular weight and potential for stereochemistry. A detailed study on the properties of selected sesquiterpenes was conducted as part of a broader investigation on the effects of sesquiterpenes on the central nervous system. A set of 18 sesquiterpenes, rigorously selected from an original list of 114, was divided into 2 groups i.e., the training and test sets, with each containing 9 compounds. The training set was evaluated for the sedative activity in mice through inhalation, and all compounds were sedatives at any dose in the range of 4 × 10−4–4 × 10−2 mg/cage, except for curzerene. Molecular determinants of the sedative activities of sesquiterpenes were evaluated using quantitative structure–activity relationship (QSAR) and structure–activity relationship (SAR) analyses. An additional test set of six compounds obtained from the literature was utilized for validating the QSAR model. The parental carbonyl cation and an oxygen-containing groups are possible determinants of sedative activity. The QSAR study using multiple regression models could reasonably predict the sedative activity of sesquiterpenes with statistical parameters such as the correlation coefficient r2 = 0.82 > 0.6 and q2 LOO = 0.71 > 0.5 obtained u...
Source: Planta Medica - Category: Drugs & Pharmacology Authors: Tags: Original Papers Source Type: research