Molecules, Vol. 28, Pages 4934: Morphological Effects of Au Nanoparticles on Electrochemical Sensing Platforms for Nitrite Detection

Molecules, Vol. 28, Pages 4934: Morphological Effects of Au Nanoparticles on Electrochemical Sensing Platforms for Nitrite Detection Molecules doi: 10.3390/molecules28134934 Authors: Ruiqin Feng Ye Fan Yun Fang Yongmei Xia Au nanoparticles were synthesized in a soft template of pseudo-polyanions composed of polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS) by the in situ reduction of chloroauric acid (HAuCl4) with PVP. The particle sizes and morphologies of the Au nanoparticles were regulated with concentrations of PVP or SDS at room temperature. Distinguished from the Au nanoparticles with various shapes, Au nanoflowers (AuNFs) with rich protrusion on the surface were obtained at the low final concentration of SDS and PVP. The typical AuNF synthesized in the PVP (50 g·L−1)–SDS (5 mmol·L−1)–HAuCl4 (0.25 mmol·L−1) solution exhibited a face-centered cubic structure dominated by a {111} crystal plane with an average equivalent particle size of 197 nm and an average protrusion height of 19 nm. Au nanoparticles with four different shapes, nanodendritic, nanoflower, 2D nanoflower, and nanoplate, were synthesized and used to modify the bare glassy carbon electrode (GCE) to obtain Au/GCEs, which were assigned as AuND/GCE, AuNF/GCE, 2D-AuNF/GCE, and AuNP/GCE, respectively. Electrochemical sensing platforms for nitrite detection were constructed by ...
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research