Interaction of Graphene Oxide Nanoparticles with Human Mononuclear Cells in the Cell-IQ System

The interaction of graphene oxide nanoparticles with human peripheral blood mononuclear cells was studied using the Cell-IQ continuous monitoring system for living cells. We used graphene oxide nanoparticles of various sizes coated with linear or branched polyethylene glycol (PEG) in concentrations of 5 and 25 μg/ml. After 24-h incubation with graphene oxide nanoparticles, the increase in the number of peripheral blood mononuclear cells at visualization points decreased; nanoparticles coated with branched PEG more markedly suppressed cell growth in culture. In the presence of graphene oxide nanoparticles , peripheral blood mononuclear cells retained high viability in culture after daily monitoring in the Cell-IQ system. The studied nanoparticles were engulfed by monocytes and the type of PEGylation had no effect on this process. Thus, graphene oxide nanoparticles reduced the increase in peripheral b lood mononuclear cell mass during dynamic observation in the Cell-IQ system without reducing their viability.
Source: Bulletin of Experimental Biology and Medicine - Category: Biology Source Type: research