Combining multi-isotope technology, hydrochemical information, and MixSIAR model to identify and quantify nitrate sources of groundwater and surface water in a multi-land use region

Environ Sci Pollut Res Int. 2023 Jun 8. doi: 10.1007/s11356-023-27720-9. Online ahead of print.ABSTRACTAccurate identification of nitrate (NO3-) sources is the premise of non-point source pollution control in watersheds. The multiple isotope techniques (δ15N-NO3-, δ18O-NO3-, δ2H-H2O, δ18O-H2O), combined with hydrochemistry characteristics, land use information, and Bayesian stable isotope mixing model (MixSIAR), were used to identify the sources and contributions of NO3- in the agricultural watershed of the upper Zihe River, China. A total of 43 groundwater (GW) and 7 surface water (SFW) samples were collected. The results showed that NO3- concentrations of 30.23% GW samples exceeded the WHO maximum permissible limit level, whereas SFW samples did not exceed the standard. The NO3- content of GW varied significantly among different land uses. The averaged GW NO3- content in livestock farms (LF) was the highest, followed by vegetable plots (VP), kiwifruit orchards (KF), croplands (CL), and woodlands (WL). Nitrification was the main transformation process of nitrogen, while denitrification was not significant. Hydrochemical analysis results combined with NO isotopes biplot showed that manure and sewage (M&S), NH4+ fertilizers (NHF), and soil organic nitrogen (SON) were the mixed sources of NO3-. The MixSIAR model summarized that M&S was the main NO3- contributor for the entire watershed, SFW, and GW. For contribution rates of sources in GW of different land use patte...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research