Localization of cyclopropyl groups and alkenes within glycerophospholipids using gas ‐phase ion/ion chemistry

AbstractShotgun lipid analysis using electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a common approach for the identification and characterization of glycerophohspholipids GPs. ESI-MS/MS, with the aid of collision-induced dissociation (CID), enables the characterization of GP species at the headgroup and fatty acyl sum compositional levels. However, important structural features that are often present, such as carbon –carbon double bond(s) and cyclopropane ring(s), can be difficult to determine. Here, we report the use of gas-phase charge inversion reactions that, in combination with CID, allow for more detailed structural elucidation of GPs. CID of a singly deprotonated GP, [GP − H]−, generates FA anions, [FA  − H]−. The fatty acid anions can then react with doubly charged cationic magnesium tris-phenanthroline complex, [Mg(Phen)3]2+, to form charge inverted complex cations of the form [FA  − H + MgPhen2]+. CID of the complex generates product ion spectral patterns that allow for the identification of carbon –carbon double bond position(s) as well as the sites of cyclopropyl position(s) in unsaturated lipids. This approach to determining both double bond and cyclopropane positions is demonstrated with GPs for the first time using standards and is applied to lipids extracted fromEscherichia coli.
Source: Journal of Mass Spectrometry - Category: Chemistry Authors: Tags: RESEARCH ARTICLE Source Type: research