α-Synuclein Induced the Occurrence of RBD via Interaction with OX1R and Modulated Its Degradation

AbstractRapid eye movement (REM) sleep behavior disorder (RBD) is a powerful early sign of Parkinson ’s disease (PD), but the pathogenetic mechanism involved in RBD remains largely unexplored. α-Synuclein has been verified to form Lewy bodies in the orexin neurons, whose activity and function rely on the orexin 1 receptor (OX1R). Dysfunction of the OX1R may induce the occurrence of RBD. Here, we determined the role of the interaction between α-Synuclein and OX1R in the pathogenesis of RBD, in vitro and in vivo. We found that injection of α-Synuclein into the lateral hypothalamus area (LHA) damaged orexin neurons and induced the RBD-like sleep pattern, to further damage dopaminergic neuro ns and result in locomotor dysfunction in mice. α-Synuclein interacted with OX1R, promoting the degradation of OX1R through proteasomal and lysosomal pathways. In addition, overexpression of α-Synuclein downregulated OX1R-mediated signaling, subsequently leading to orexin neuron damage. We conclud e that α-Synuclein induced the occurrence of RBD via interaction with OX1R and modulated its degradation. These findings provide evidence for a novel mechanism by which the association of α-Synuclein with OX1R was attributed to α-Synuclein-induced orexin neuron damage, which may be a new molecula r target for an effective therapeutic strategy for RBD pathology.
Source: NeuroMolecular Medicine - Category: Neurology Source Type: research