Effect of rare earth oxide microparticles on mechanical, corrosion, antibacterial, and hemolytic behavior of Mg ‐Hydroxyapatite composite for orthopedic applications – A preliminary in‐vitro study

AbstractThe current study focused on developing a multifunctional Mg-based biodegradable composite that mitigates the trade-off between strength, antibacterial, and cytotoxicity behavior for orthopedic bone implants. The composite has been reinforced with natural mineral-based Hydroxyapatite and rare earth oxide (REO): Neodymium oxide. The effect of different concentrations of REO on the mechanical, antibacterial, and corrosion properties was analyzed. The antibacterial properties were assessed against gram-positiveB. Subtilis and gram-negativeE. Coli bacterial pathogens. Moreover, the cytotoxicity of the composites was assessed via Hemolysis percentage calculations. In addition, the microstructure characterization was performed via FESEM, XRD, and EDS techniques, and different intermetallic phase formations were recorded. Contact angle measurements were done via the sessile drop method to analyze the impact of rare earth oxide on the surface properties of the synthesized composites and their relationship with bacterial adhesion. The corrosion studies and swelling rates were performed under PBS and DMEM solutions. The composite with the addition of 1.5% REO outperformed the experiments with a compressive strength of 126.4  MPa, and a corrosion rate less than 0.2 mm/yr. The corrosion rates and degree of swelling were seen to be more stable in DMEM solution as compared to PBS. Improved antibacterial rates were observed against both pathogens after the addition of REO along w...
Source: Journal of Biomedical Materials Research Part B: Applied Biomaterials - Category: Materials Science Authors: Tags: RESEARCH ARTICLE Source Type: research