Design, synthesis and spectroscopic and structural characterization of novel N-(2-hydroxy-5-methylphenyl)-2,3-dimethoxybenzamide: DFT, Hirshfeld surface analysis, antimicrobial activity, molecular docking and toxicology

The novel compound N-(2-hydroxy-5-methylphenyl)-2,3-dimethoxybenzamide, C16H17NO4, I, was prepared by a two-step reaction and then characterized by elemental analysis and X-ray diffraction (XRD) methods. Moreover, its spectroscopic properties were investigated by FT – IR and 1H and 13C NMR. Compound I crystallized in the monoclinic space group P21/c and the molecular geometry is not planar, being divided into three planar regions. Supramolecular structures are formed by connecting units via hydrogen bonds. The ground-state molecular structure of I was optimized by the DFT-B3LYP/6-31G(d,p) method and the theoretical structure was compared with that obtained by X-ray diffraction. Intermolecular interactions in the crystal network were studied by two-dimensional (2D) and three-dimensional (3D) Hirshfeld analyses. The calculated electronic transition results were examined and the molecular electrostatic potentials (MEPs) were also determined. The in vitro antimicrobial activities of I against three Gram-positive bacteria, three Gram-negative bacteria and two fungi were determined. The compound was compared with several control drugs and showed better activity than the amoxicillin standard against Gram-positive bacteria B. subtilis, S. aureus and E. faecalis, and Gram-negative bacteria E. coli, K. pneumoniae and P. aeruginosa. The density functional theory (DFT)-optimized structure of the small molecule was used to perform molecular docking studies with proteins from experimenta...
Source: Acta Crystallographica Section C - Category: Chemistry Authors: Tags: crystal structure benzamide X-ray diffraction antimicrobial activity spectroscopic studies molecular docking Hirshfeld analysis research papers Source Type: research