Protection of propofol on liver ischemia reperfusion injury by regulating Cyp2b10/ Cyp3a25 pathway

Tissue Cell. 2022 Aug 6;78:101891. doi: 10.1016/j.tice.2022.101891. Online ahead of print.ABSTRACTTo verify whether propofol alleviates liver ischemia-reperfusion injury (IRI) in mice by regulating Cyp2b10/ Cyp3a25 pathway. The liver I/R injury in vivo and in vitro model was constructed. The serum level of AST, ALT, ALP and ALB was detected using ELISA. The mRNA and protein expression of Cyp2b10 and Cyp3a25 were determined by qRT-PCR and western blot, respectively. The liver cell activity was assessed by MTT assay. The binding between Cyp2b10 and Cyp3a25 was evaluated by online website prediction, CoIP, and cell transfection with Cyp2b10 siRNA and pcDNA3.1-Cyp3a25. The hepatocyte apoptosis was examined using flow cytometry assay. The serum level of AST, ALT, ALP was increased and that of ALB was decreased in liver I/R injury in vivo model. Also, the mRNA and protein expression of Cyp2b10 and Cyp3a25 were enhanced and reduced in liver I/R injury in vivo and vitro model respectively. The liver cell activity was markedly reduced in H/R cell model. However, these changes were all reversed with propofol treatment. Furthermore, Cyp2b10 could directly bind to Cyp3a25 to regulate the H/R-induced hepatocyte apoptosis. Propofol plays an effect of on liver I/R injury by regulating Cyp2b10/ Cyp3a25 pathway.PMID:35985247 | DOI:10.1016/j.tice.2022.101891
Source: Tissue and Cell - Category: Cytology Authors: Source Type: research