Sensors, Vol. 22, Pages 5066: Detection of a Stroke Volume Decrease by Machine-Learning Algorithms Based on Thoracic Bioimpedance in Experimental Hypovolaemia

Sensors, Vol. 22, Pages 5066: Detection of a Stroke Volume Decrease by Machine-Learning Algorithms Based on Thoracic Bioimpedance in Experimental Hypovolaemia Sensors doi: 10.3390/s22145066 Authors: Matthias Stetzuhn Timo Tigges Alexandru Gabriel Pielmus Claudia Spies Charlotte Middel Michael Klum Sebastian Zaunseder Reinhold Orglmeister Aarne Feldheiser Compensated shock and hypovolaemia are frequent conditions that remain clinically undetected and can quickly cause deterioration of perioperative and critically ill patients. Automated, accurate and non-invasive detection methods are needed to avoid such critical situations. In this experimental study, we aimed to create a prediction model for stroke volume index (SVI) decrease based on electrical cardiometry (EC) measurements. Transthoracic echo served as reference for SVI assessment (SVI-TTE). In 30 healthy male volunteers, central hypovolaemia was simulated using a lower body negative pressure (LBNP) chamber. A machine-learning algorithm based on variables of EC was designed. During LBNP, SVI-TTE declined consecutively, whereas the vital signs (arterial pressures and heart rate) remained within normal ranges. Compared to heart rate (AUC: 0.83 (95% CI: 0.73–0.87)) and systolic arterial pressure (AUC: 0.82 (95% CI: 0.74–0.85)), a model integrating EC variables (AUC: 0.91 (0.83–0.94)) showed a superior ability to predict a decrease in SVI-TTE ≥ 20% (...
Source: Sensors - Category: Biotechnology Authors: Tags: Article Source Type: research