Filtered By:
Source: Molecular Neurobiology
Condition: Epilepsy

This page shows you your search results in order of date.

Order by Relevance | Date

Total 6 results found since Jan 2013.

Role of tRNA-Derived Fragments in Neurological Disorders: a Review
AbstracttRFs are small tRNA derived fragments that are emerging as novel therapeutic targets and regulatory molecules in the pathophysiology of various neurological disorders. These are derived from precursor or mature tRNA, forming different subtypes that have been reported to be involved in neurological disorders like stroke, Alzheimer ’s, epilepsy, Parkinson’s, MELAS, autism, and Huntington’s disorder. tRFs were earlier believed to be random degradation debris of tRNAs. The significant variation in the expression level of tRFs in disease conditions indicates their salient role as key players in regulation of these...
Source: Molecular Neurobiology - January 19, 2023 Category: Neurology Source Type: research

Recent Synergy of Nanodiamonds: Role in Brain-Targeted Drug Delivery for the Management of Neurological Disorders
AbstractThe aim of the present review article is to summarize the role of nanodiamonds in various neurological diseases. We have taken related literature of making this review article from ScienceDirect, springer, Research gate, PubMed, Sci-finder, etc. The current approaches for treating neurological conditions such as glioblastoma includes chemotherapy or combination anti-retro viral therapy for HIV (human immunodeficiency virus) or use of anti-Alzheimer drugs during cognitive impairment. These approaches can provide only symptomatic relief as they do not target the cause of the disease due to their inability to penetrat...
Source: Molecular Neurobiology - May 27, 2022 Category: Neurology Source Type: research

Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases
This article mainly focu ses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new ...
Source: Molecular Neurobiology - October 15, 2021 Category: Neurology Source Type: research

Apoptosis Following Cortical Spreading Depression in Juvenile Rats
AbstractRepetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders, such as stroke and epilepsy. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo, we thus aimed to investigate the effect of repetitive CSD on the expression caspase-3, caspase-8, caspase-9, and caspase-12 in different brain regions using immunohistochemistry and western blotting techniques...
Source: Molecular Neurobiology - April 4, 2018 Category: Neurology Source Type: research

DAPK1 Signaling Pathways in Stroke: from Mechanisms to Therapies
AbstractDeath-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin (CaM)-dependent serine/threonine protein kinase, plays important roles in diverse apoptosis pathways not only in tumor suppression but also in neuronal cell death. The requirement of DAPK1 catalytic activity for its proposed cell functions and the elevation of catalytic activity of DAPK1 in injured neurons in models of neurological diseases, such as ischemia and epilepsy, validate that DAPK1 can be taken as a potential therapeutic target in these diseases. Recent studies show that DAPK1-NR2B, DAPK1-DANGER, DAPK1-p53, and DAPK1-Tau are currently known path...
Source: Molecular Neurobiology - July 13, 2017 Category: Neurology Source Type: research

A Tale of the Good and Bad: Remodeling of the Microtubule Network in the Brain by Cdk5
Abstract Cdk5, a cyclin-dependent kinase family member, is a global orchestrator of neuronal cytoskeletal dynamics. During embryogenesis, Cdk5 is indispensable for brain development. In adults, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes through long-term potentiation and long-term depression, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity becomes deregulated in various brain disorders, including Alzheimer’s disease, Parkinson’s disease, Hunt...
Source: Molecular Neurobiology - March 5, 2016 Category: Neurology Source Type: research