Filtered By:
Source: Metabolic Brain Disease
Cancer: Neuroblastoma

This page shows you your search results in order of date.

Order by Relevance | Date

Total 2 results found since Jan 2013.

Long non-coding RNA Gm11974 aggravates oxygen –glucose deprivation-induced injury via miR-122-5p/SEMA3A axis in ischaemic stroke
This study aimed to investigate the role and potential mechanism of lncRNA Gm11974 in ischaemic stroke. Mouse  neuroblastoma N2a cells were treated with oxygen–glucose deprivation (OGD). The levels of Gm11974, microRNA-122-5p (miR-122-5p) and semaphorin 3A (SEMA3A) were detected by quantitative real-time PCR (qRT-PCR) or western blot. Cell viability and apoptosis were determined by 3-(4,5-dimethyl-2-thia zolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, Caspase-3 Assay Kit and flow Cytometry. The levels of oxidative stress indicators were measured by using commercial kits. The relationship between miR-122-5p and ...
Source: Metabolic Brain Disease - August 2, 2021 Category: Neurology Source Type: research

Neuroprotective effects of miR-532-5p against ischemic stroke
In this study, we established anin vivo middle cerebral artery occlusion (MCAO) model in mice. The expression level of miR-532-5p, neurological score, infarct area, neuronal apoptosis, and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway-related molecules were examined. Low miR-532-5p levels and high phosphatase and tensin homolog deleted on chromosome 10 (PTEN) levels were detected in the mouse MCAO model. MiR-532-5p overexpression improved neurological dysfunction, reduced the infarct area, attenuated neuronal injury and apoptosis, and promoted the activation of the PI3K/Akt signaling pathway in MCAO mice. In vitro...
Source: Metabolic Brain Disease - February 20, 2020 Category: Neurology Source Type: research