Filtered By:
Drug: Penicillin
Nutrition: Diets

This page shows you your search results in order of date.

Order by Relevance | Date

Total 3 results found since Jan 2013.

Naringenin Produces Neuroprotection Against LPS-Induced Dopamine Neurotoxicity via the Inhibition of Microglial NLRP3 Inflammasome Activation
Conclusions: This study demonstrated that NAR targeted microglial NLRP3 inflammasome to protect DA neurons against LPS-induced neurotoxicity. These findings suggest NAR might hold a promising therapeutic potential for PD. Background Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. It is characterized by slow and progressive loss of dopamine (DA) neurons in the midbrain substantia nigra (SN) with the accumulation of α-synuclein in Lewy bodies and neuritis (1). Although the etiology of PD remains unclear, amounts of studies have suggested that ne...
Source: Frontiers in Immunology - April 30, 2019 Category: Allergy & Immunology Source Type: research

TonEBP Suppresses the HO-1 Gene by Blocking Recruitment of Nrf2 to Its Promoter
Discussion Dynamic changes in the functional phenotype of macrophages are associated with pathogenesis of inflammatory diseases (5–7). TonEBP primes macrophages toward an M1 phenotype, which has pro-inflammatory properties. TonEBP does this by promoting expression of pro-inflammatory genes via interaction with NF-κB (36) and by binding directly to the promoter (37, 64). In addition, TonEBP suppresses expression of the anti-inflammatory cytokine IL-10 by limiting chromatin access to the promoter (37). The pro-inflammatory function of TonEBP suggests that inhibiting its expression or activation could suppres...
Source: Frontiers in Immunology - April 17, 2019 Category: Allergy & Immunology Source Type: research

Genetic Regulation of Liver Metabolites and Transcripts Linking to Biochemical-Clinical Parameters
Conclusion In summary, this study is the first to combine metabolomics, transcriptomics, and genome-wide association studies in a porcine model. Our results improve understanding of the genetic regulation of metabolites which link to transcripts and finally biochemical-clinical parameters. Further, high-performance profiling of metabolites as intermediate phenotypes is a potentially powerful approach to uncover how genetic variation affects metabolic and health status. Our results advance knowledge in areas of biomedical and agricultural interest and identify potential correlates of biomarkers, SNPs-metabolites, SNPs-tran...
Source: Frontiers in Genetics - April 16, 2019 Category: Genetics & Stem Cells Source Type: research