Filtered By:
Source: GEO: Gene Expression Omnibus
Nutrition: High Fat

This page shows you your search results in order of date.

Order by Relevance | Date

Total 4 results found since Jan 2013.

GSE222499 Liver-specific FGFR4 knockdown in mice on a HFD increases bile acid synthesis and improves hepatic steatosis II
Contributor : Softic SamirSeries Type : Expression profiling by high throughput sequencingOrganism : Mus musculusNonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increased risk in patients with metabolic syndrome. There are no FDA approved treatments, but farnesoid X receptor (FXR) agonists have shown promising results in clinical studies for NAFLD management. In addition to FXR,  fibroblast growth factor receptor FGFR4 is a key mediator of hepatic bile acid synthesis. Using N-acetylgalactosamine-conjugated siRNA, we knocked down FGFR4 specifically in the liver of mice on chow or...
Source: GEO: Gene Expression Omnibus - January 11, 2023 Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Mus musculus Source Type: research

GSE106177 Stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from Type2 diabetes patients: rescue by alpha-ketoglutarate and TET-TDG functional reactivation human cells RNA-seq
Conclusions: In this report we established that diabetes may epigenetically modify and compromise function of the rapeutically relevant cardiac mesenchymal cells. Restoring the epi-metabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.
Source: GEO: Gene Expression Omnibus - October 31, 2018 Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Homo sapiens Source Type: research

GSE106180 Stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from Type2 diabetes patients: rescue by alpha-ketoglutarate and TET-TDG functional reactivation mouse heart RNA-seq
Conclusions: In this report we established that diabetes may epigenetically modify and compromise function of the rapeutically relevant cardiac mesenchymal cells. Restoring the epi-metabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.
Source: GEO: Gene Expression Omnibus - October 31, 2018 Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Mus musculus Source Type: research

GSE106178 Stable oxidative cytosine modifications accumulate in cardiac mesenchymal cells from Type2 diabetes patients: rescue by alpha-ketoglutarate and TET-TDG functional reactivation mouse muscle RNA-seq
Conclusions: In this report we established that diabetes may epigenetically modify and compromise function of the rapeutically relevant cardiac mesenchymal cells. Restoring the epi-metabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.
Source: GEO: Gene Expression Omnibus - October 31, 2018 Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Mus musculus Source Type: research