Filtered By:
Cancer: Brain Cancers
Countries: Spain Health

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 3 results found since Jan 2013.

Naringenin Produces Neuroprotection Against LPS-Induced Dopamine Neurotoxicity via the Inhibition of Microglial NLRP3 Inflammasome Activation
Conclusions: This study demonstrated that NAR targeted microglial NLRP3 inflammasome to protect DA neurons against LPS-induced neurotoxicity. These findings suggest NAR might hold a promising therapeutic potential for PD. Background Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. It is characterized by slow and progressive loss of dopamine (DA) neurons in the midbrain substantia nigra (SN) with the accumulation of α-synuclein in Lewy bodies and neuritis (1). Although the etiology of PD remains unclear, amounts of studies have suggested that ne...
Source: Frontiers in Immunology - April 30, 2019 Category: Allergy & Immunology Source Type: research

Detailed Dissection of UBE3A-Mediated DDI1 Ubiquitination
Discussion Poly-ubiquitinated proteins targeted for degradation might be recognized directly by proteasomal receptors or by proteasomal shuttling proteins. The first shuttling proteins – Ddi1, Rad23 and Dsk2 – were identified and characterized in Saccharomyces cerevisiae (Lambertson et al., 1999; Kaplun et al., 2005). Proteasomal shuttles contain an N-terminal ubiquitin-like (UBL) domain that interacts with the 26S proteasome (Finley, 2009), and a C-terminal ubiquitin-binding domain domain (UBD) that binds to ubiquitin or poly-ubiquitin chains (Bertolaet et al., 2001). When ubiquitinated, substrates are capt...
Source: Frontiers in Physiology - May 2, 2019 Category: Physiology Source Type: research

Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTP β/ζ Axis: Relevance in Therapeutic Development
Conclusion The expression of the components of the PTN-MK-RPTPβ/ζ axis in immune cells and in inflammatory diseases suggests important roles for this axis in inflammation. Pleiotrophin has been recently identified as a limiting factor of metainflammation, a chronic pathological state that contributes to neuroinflammation and neurodegeneration. Pleiotrophin also seems to potentiate acute neuroinflammation independently of the inflammatory stimulus while MK seems to play different -even opposite- roles in acute neuroinflammation depending on the stimulus. Which are the functions of MK and PTN in chronic neuroi...
Source: Frontiers in Pharmacology - April 11, 2019 Category: Drugs & Pharmacology Source Type: research