Filtered By:
Specialty: Materials Science
Cancer: Breast Cancer

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 23 results found since Jan 2013.

Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis.
We described here the mechanisms by which small interfering RNA (siRNA) molecules incorporated in reconstituted high density lipoprotein (rHDL) were efficiently transferred into the cytoplasm of cells to perform target-specific therapy of tumor angiogenesis. Using fluorescent-tagged apolipoprotein A-I (apoA-I) and cholesterol-conjugated siRNA (Chol-siRNA), it was confirmed with FACS and confocal microscopic measurements that Chol-siRNA-loaded rHDL nanoparticles (rHDL/Chol-siRNA complexes) were successfully established and apoA-I certainly was attached to the surface of Chol-siRNA-loaded lipoplexes (Lipos/Chol-siRNA complex...
Source: Biomaterials - May 27, 2014 Category: Materials Science Authors: Ding Y, Wang Y, Zhou J, Gu X, Wang W, Liu C, Bao X, Wang C, Li Y, Zhang Q Tags: Biomaterials Source Type: research

Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer.
Abstract To improve the non-invasive therapeutic efficacy for ER positive breast cancer (ER+ BC), we fabricated a multifunctional FOXA1 loaded porphyrin microbubble to combine photodynamic therapy (PDT) and gene therapy of FOXA1 knockdown (KD) with ultrasound targeted microbubble destruction (UTMD) technology under the guidance of contrast enhanced ultrasound (CEUS). Cationic porphyrin microbubbles (CpMBs) were firstly fabricated from a porphyrin grafted lipid with two cationic amino groups (PGL-NH2) and fluorocarbon inert gas of C3F8. Porphyrin group in the CpMBs monolayer could be used as a photosensitizer for ...
Source: Biomaterials - May 3, 2018 Category: Materials Science Authors: Zhao R, Liang X, Zhao B, Chen M, Liu R, Sun S, Yue X, Wang S Tags: Biomaterials Source Type: research

Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (β-amino ester) nanoparticles co-delivering two siRNA and paclitaxel.
Abstract Breast cancer is the most vicious killer for women's health, while metastasis is the main culprit, which leads to failure of treatment by increasing relapse rate. In this work, a new complexes nanoparticles loading two siRNA (Snail siRNA (siSna) and Twist siRNA (siTwi)) and paclitaxel (PTX) were designed and constructed using two new amphiphilic polymer, polyethyleneimine-block-poly[(1,4-butanediol)-diacrylate-β-5-hydroxyamylamine] (PEI-PDHA) and polyethylene glycol-block-poly[(1,4-butanediol)-diacrylate-β-5-hydroxyamylamine] (PEG-PDHA) by self-assembly. The experimental results showed that in the 4T1 t...
Source: Biomaterials - February 25, 2015 Category: Materials Science Authors: Tang S, Yin Q, Su J, Sun H, Meng Q, Chen Y, Chen L, Huang Y, Gu W, Xu M, Yu H, Zhang Z, Li Y Tags: Biomaterials Source Type: research

Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells
Publication date: June 2019Source: Materials Science and Engineering: C, Volume 99Author(s): Milene Dalmina, Frederico Pittella, Jelver Alexander Sierra, Gabriela Regina Rosa Souza, Adny Henrique Silva, André Avelino Pasa, Tânia Beatriz Creczynski-PasaAbstractShort interfering RNA (siRNA) showed to be a viable alternative to a better prognosis in cancer therapy. Nevertheless, the successful application of this strategy still depends on the development of nanocarriers for the safe delivery of siRNA into the diseased tissue, which mostly occurs by passive accumulation. When an external magnetic field is applied, magnetic n...
Source: Materials Science and Engineering: C - February 23, 2019 Category: Materials Science Source Type: research

Polymeric nanoparticles of siRNA prepared by a double-emulsion solvent-diffusion technique: Physicochemical properties, toxicity, biodistribution and efficacy in a mammary carcinoma mice model.
Abstract siRNA-loaded nanoparticles (NPs) administered systemically can overcome the poor stability and rapid elimination of free double-stranded RNA in circulation, resulting in increased tumor accumulation and efficacy. siRNA against osteopontin (siOPN), a protein involved in breast cancer development, was encapsulated in poly(D,L-lactic-co-glycolic acid) NPs by a double emulsion solvent diffusion (DESD) technique. We also compared the effect of polyethylenimine (PEI) molecular weight (800 Da and 25 kDa), used as the counter-ion for siRNA complexation, on the physicochemical properties of the NPs, cytotoxicity...
Source: Biomaterials - August 23, 2017 Category: Materials Science Authors: Ben David-Naim M, Grad E, Aizik G, Nordling-David MM, Moshel O, Granot Z, Golomb G Tags: Biomaterials Source Type: research

Development of lipid nanoparticles for delivery of siRNA to neural cells
Lipid nanoparticles (LNPs) are a clinically approved platform to deliver siRNA to the liver. We are optimizing this platform to deliver siRNA for the treatment of pain. siRNA against TRPV1 (siTRPV1) was chosen as a proof of concept. siTRPV1-LNPs were formulated using C12-200, an ionizable cationic lipid and helper lipids. Their particle size and surface charge was characterized using dynamic light scattering and siRNA encapsulation efficiency was determined using a Ribogreen assay. A panel of breast cancer cell lines (MCF-7, MDA-MB-231 and BT-549) that express TRPV1 were selected for in vitro screening of LNPs to determine...
Source: The Journal of Pain - May 1, 2021 Category: Materials Science Authors: Purva Khare, Kandarp Dave, Jane Hartung, Michael Gold, Devika Manickam Source Type: research

Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells
In this study, we prepared a magnetic hybrid nanostructure composed of iron oxide nanoparticles coated with caffeic acid and stabilized by layers of calcium phosphate and PEG-polyanion block copolymer for incorporation of siRNA. Transmission electron microscopy images showed monodisperse, neutrally charged compact spheres sized <100 nm. Dynamic light scattering and nanoparticle tracking analysis revealed that the nanostructure had an average hydrodynamic diameter of 130 nm. Nanoparticle suspensions remained stable over 42 days of storage at 4 and 25 °C. Unloaded caffeic acid–magnetic calcium phosphate (Caf-MCaP)...
Source: Materials Science and Engineering: C - December 26, 2019 Category: Materials Science Source Type: research

Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery.
Abstract Targeted delivery of therapeutic genes to the tumor site is critical for successful and safe cancer gene therapy. The arginine grafted bio-reducible poly (cystamine bisacrylamide-diaminohexane, CBA-DAH) polymer (ABP) conjugated poly (amido amine) (PAMAM), PAM-ABP (PA) was designed previously as an efficient gene delivery carrier. To achieve high efficacy in cancer selective delivery, we developed the tumor targeting bio-reducible polymer, PA-PEG1k-RGD, by conjugating cyclic RGDfC (RGD) peptides, which bind αvβ3/5 integrins, to the PAM-ABP using polyethylene glycol (PEG, 1 kDa) as a spacer. Physical cha...
Source: Biomaterials - May 31, 2014 Category: Materials Science Authors: Kim HA, Nam K, Kim SW Tags: Biomaterials Source Type: research

Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers.
Abstract A series of endosomolytic mixed micelles was synthesized from two diblock polymers, poly[ethylene glycol-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (PEG-b-pDPB) and poly[dimethylaminoethyl methacrylate-b-(dimethylaminoethyl methacrylate-co-propylacrylic acid-co-butyl methacrylate)] (pD-b-pDPB), and used to determine the impact of both surface PEG density and PEG molecular weight on overcoming both intracellular and systemic siRNA delivery barriers. As expected, the percent PEG composition and PEG molecular weight in the corona had an inverse relationship with mixed mi...
Source: Biomaterials - December 6, 2014 Category: Materials Science Authors: Miteva M, Kirkbride KC, Kilchrist KV, Werfel TA, Li H, Nelson CE, Gupta MK, Giorgio TD, Duvall CL Tags: Biomaterials Source Type: research

Hollow carbon nanospheres as a versatile platform for co-delivery of siRNA and chemotherapeutics
Publication date: September 2017 Source:Carbon, Volume 121 Author(s): Lingmin Zhang, Xinglong Yang, Ying Li, Wenfu Zheng, Xingyu Jiang The synergistic treatment with therapeutic nucleic acids and chemotherapeutics is considered to be a feasible strategy to overcome drug-resistant cancers. Herein, we constructed a novel amine dotted hollow carbon nanospheres (HCNs) to serve as a versatile platform for co-delivery of siRNA targeting multidrug resistance gene (MDR1) mRNA (siMDR1) and chemotherapeutics (Doxorubicin or Cisplatin) to fight drug-resistant cancers. The HCNs show enhanced loading capability of both siRNA and chemo...
Source: Carbon - May 27, 2017 Category: Materials Science Source Type: research

The programmed site-specific delivery of LY3200882 and PD-L1 siRNA boosts immunotherapy for triple-negative breast cancer by remodeling tumor microenvironment
In this study, we successfully constructed a programmed site-specific delivery nanosystem for the combined delivery of transforming growth factor beta (TGF-β) receptor inhibitor LY3200882 (LY) and PD-L1 siRNA (siPD-L1) to boost anti-tumor immunotherapy. As expected, LY in the outer layer of the nanosystem was released by stimulation of MMP2, and dramatically down-regulated the expression of extracellular matrix (ECM) in the tumor-associated fibroblasts (TAFs), and thus promoted the infiltration of effector T cells and penetration of nanomedicines. Simultaneously, the blockade of TGF-β by LY also triggered immunogenic cel...
Source: Biomaterials - April 24, 2022 Category: Materials Science Authors: Pan Zhang Chao Qin Nan Liu Xinyuan Zhou Xuxin Chu Fangnan Lv Yongwei Gu Lifang Yin Jiyong Liu Jianping Zhou Meirong Huo Source Type: research

Synchronous targeted delivery of TGF- β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment
Biomaterials. 2023 Jul 25;301:122253. doi: 10.1016/j.biomaterials.2023.122253. Online ahead of print.ABSTRACTThe poor permeability of therapeutic drugs, limited T-cell infiltration, and strong immunosuppressive tumor microenvironment of triple-negative breast cancer (TNBC) acts as a prominent barrier to the delivery of drugs and immunotherapy including programmed cell death ligand-1 antibody (anti-PD-L1). Transforming growth factor (TGF)-β, an important cytokine produced by cancer-associated fibroblasts (CAFs) and tumor cells contributes to the pathological vasculature, dense tumor stroma and strong immunosuppressive tumo...
Source: Biomaterials - August 3, 2023 Category: Materials Science Authors: Mengmeng Yang Chao Qin Linlin Tao Gang Cheng Jingjing Li Fangnan Lv Nan Yang Zuhang Xing Xinyu Chu Xiaopeng Han Meirong Huo Lifang Yin Source Type: research

Acid-degradable core-shell nanoparticles for reversed tamoxifen-resistance in breast cancer by silencing manganese superoxide dismutase (MnSOD).
This study attempted to reverse tamoxifen (TAM)-resistance in breast cancer by silencing a mitochondrial enzyme, manganese superoxide dismutase (MnSOD), which dismutates TAM-induced reactive oxygen species (ROS) (i.e., superoxide) to less harmful hydrogen peroxide and hampers therapeutic effects. Breast cancer cells were co-treated with TAM and MnSOD siRNA-delivering nanoparticles (NPs) made of a siRNA/poly(amidoamine) (PAMAM) dendriplex core and an acid-degradable polyketal (PK) shell. The (siRNA/PAMAM)-PK NPs were designed for the PK shell to shield siRNA from nucleases, minimize detrimental aggregation in serum, and fac...
Source: Biomaterials - September 19, 2013 Category: Materials Science Authors: Cho SK, Pedram A, Levin ER, Kwon YJ Tags: Biomaterials Source Type: research