Filtered By:
Source: Biomaterials
Cancer: Cancer

This page shows you your search results in order of date. This is page number 3.

Order by Relevance | Date

Total 77 results found since Jan 2013.

M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages
In this study, we harnessed M1 macrophage-derived exosomes engineered to foster M1 polarization and target IL4R for the inhibition of tumor growth by reprogramming TAMs into M1-like macrophages. M1 exosomes were transfected with NF-κB p50 siRNA and miR-511-3p to enhance M1 polarization and were surface-modified with IL4RPep-1, an IL4R-binding peptide, to target the IL4 receptor of TAMs (named IL4R-Exo(si/mi). IL4R-Exo(si/mi) were internalized and downregulated target gens in M2 macrophages and decreased M2 markers, while increasing M1 markers, more efficiently compared with untargeted and control peptide-labeled exosomes ...
Source: Biomaterials - September 24, 2021 Category: Materials Science Authors: Gowri Rangaswamy Gunassekaran Sri Murugan Poongkavithai Vadevoo Moon-Chang Baek Byungheon Lee Source Type: research

Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast cancer progression and metastasis
Biomaterials. 2021 Jun 24;275:120988. doi: 10.1016/j.biomaterials.2021.120988. Online ahead of print.ABSTRACTPD-L1/PD-1 blockade therapy shows durable responses to triple-negative breast cancer (TNBC), but the response rate is low. CD155 promotes tumor metastasis intrinsically and modulates the immune response extrinsically as the ligand of DNAM-1 (costimulatory receptor) and TIGIT/CD96 (coinhibitory receptors). Herein, we verified that TNBC cells coexpressed PD-L1 and CD155. By examining the receptors of PD-L1 and CD155 on TNBC tumor-infiltrating lymphocytes (TILs) over time, we observed that PD-1 and DNAM-1 were upregula...
Source: Biomaterials - June 29, 2021 Category: Materials Science Authors: Chuanrong Chen Qianqian Guo Hao Fu Jian Yu Liting Wang Ying Sun Jiali Zhang Yourong Duan Source Type: research

Near-infrared boosted ROS responsive siRNA delivery and cancer therapy with sequentially peeled upconversion nano-onions.
Abstract RNA interference (RNAi) therapy has become an appealing approach for cancer treatment, while the specificity and efficiency of controlled small interference RNA (siRNA) release remain challenging due to the heterogeneity of tumor environment. Herein, upconversion nano-onions (UCNOs) with stacked polymer coating layers are constructed to decompose sequentially in response to extracellular environment and NIR stimulation. The UCNOs (UCNPs-PEIRB-PEISeSe/siRNA-R8-HA) are composed of upconversion nanoparticles (UCNPs) core functionalized with inner coating layer of photosensitizer rose bengal (RB) conjugated P...
Source: Biomaterials - September 19, 2019 Category: Materials Science Authors: He Y, Guo S, Wu L, Chen P, Wang L, Liu Y, Ju H Tags: Biomaterials Source Type: research

Engineering multifunctional bioactive citric acid-based nanovectors for intrinsical targeted tumor imaging and specific siRNA gene delivery in vitro/in vivo.
Abstract Targeted tumor imaging and efficient specific gene delivery in vivo has been one of the main challenges in gene-based cancer diagnosis and therapy. Herein, we engineered a citric acid-based polymer with intrinsical photoluminescence and gene loading capacity to achieve targeted delivery of siRNA and tumor imaging in vitro and in vivo. The multifunctional platform was formed from the self-assembling of poly (citric acid)-polymine conjugated with folic acid and rhodamine B (PPFR). PPFR showed stable photoluminescent ability and could effectively bind and protect the siRNA against RNase degradation. PPFR als...
Source: Biomaterials - February 2, 2019 Category: Materials Science Authors: Wang M, Guo Y, Xue Y, Niu W, Chen M, Ma PX, Lei B Tags: Biomaterials Source Type: research

Auto-fluorescent polymer nanotheranostics for self-monitoring of cancer therapy via triple-collaborative strategy.
Abstract Aberrant regulation of angiogenesis supply sufficient oxygen and nutrients to exacerbate tumor progression and metastasis. Taking this hallmark of cancer into account, reported here is a self-monitoring and triple-collaborative therapy system by auto-fluorescent polymer nanotheranostics which could be concurrently against angiogenesis and tumor cell growth by combining the benefits of anti-angiogenesis, RNA interfere and photothermal therapy (PTT). Auto-fluorescent amphiphilic polymer polyethyleneimine-polylactide (PEI-PLA) with positive charge can simultaneously load hydrophobic antiangiogenesis agent co...
Source: Biomaterials - December 20, 2018 Category: Materials Science Authors: Shao L, Li Q, Zhao C, Lu J, Li X, Chen L, Deng X, Ge G, Wu Y Tags: Biomaterials Source Type: research

Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness.
Abstract Desmoplasia is a hallmark of pancreatic cancer and consists of fibrotic cells and secreted extracellular matrix (ECM) components. Various in vitro three-dimensional (3D) models of desmoplasia have been reported, but little is known about the relevant thickness of the engineered fibrotic tissue. We thus measured the thickness of fibrotic tissue in human pancreatic cancer, as defined by the distance from the blood vessel wall to tumor cells. We then generated a 3D fibrosis model with a thickness reaching the clinically observed range using pancreatic stellate cells (PSCs), the main cellular constituent of p...
Source: Biomaterials - November 17, 2018 Category: Materials Science Authors: Tanaka HY, Kitahara K, Sasaki N, Nakao N, Sato K, Narita H, Shimoda H, Matsusaki M, Nishihara H, Masamune A, Kano MR Tags: Biomaterials Source Type: research

Delivery of small interfering RNA against Nogo-B receptor via tumor-acidity responsive nanoparticles for tumor vessel normalization and metastasis suppression.
This study demonstrated that NgBR is a promising therapeutic target in abnormal tumor vasculature and aggressive cancer cells, and the tumor-responsive nanoparticle with the feature of charge transformation offers great potential for tumor-specific delivery of gene therapeutics. PMID: 29803999 [PubMed - as supplied by publisher]
Source: Biomaterials - May 21, 2018 Category: Materials Science Authors: Wang B, Ding Y, Zhao X, Han X, Yang N, Zhang Y, Zhao Y, Zhao X, Taleb M, Miao QR, Nie G Tags: Biomaterials Source Type: research

Glycogen-nucleic acid constructs for gene silencing in multicellular tumor spheroids.
Abstract The poor penetration of nanocarrier-siRNA constructs into tumor tissue is a major hurdle for the in vivo efficacy of siRNA therapeutics, where the ability of the constructs to permeate the 3D multicellular matrix is determined by their physicochemical properties. Herein, we optimized the use of soft glycogen nanoparticles for the engineering of glycogen-siRNA constructs that can efficiently penetrate multicellular tumor spheroids and exert a significant gene silencing effect. Glycogen nanoparticles from different bio-sources and with different structural features were investigated. We show that larger gl...
Source: Biomaterials - May 20, 2018 Category: Materials Science Authors: Wojnilowicz M, Besford QA, Wu YL, Loh XJ, Braunger JA, Glab A, Cortez-Jugo C, Caruso F, Cavalieri F Tags: Biomaterials Source Type: research

Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer.
Abstract To improve the non-invasive therapeutic efficacy for ER positive breast cancer (ER+ BC), we fabricated a multifunctional FOXA1 loaded porphyrin microbubble to combine photodynamic therapy (PDT) and gene therapy of FOXA1 knockdown (KD) with ultrasound targeted microbubble destruction (UTMD) technology under the guidance of contrast enhanced ultrasound (CEUS). Cationic porphyrin microbubbles (CpMBs) were firstly fabricated from a porphyrin grafted lipid with two cationic amino groups (PGL-NH2) and fluorocarbon inert gas of C3F8. Porphyrin group in the CpMBs monolayer could be used as a photosensitizer for ...
Source: Biomaterials - May 3, 2018 Category: Materials Science Authors: Zhao R, Liang X, Zhao B, Chen M, Liu R, Sun S, Yue X, Wang S Tags: Biomaterials Source Type: research

Precision design of nanomedicines to restore gemcitabine chemosensitivity for personalized pancreatic ductal adenocarcinoma treatment.
Abstract Low chemosensitivity considerably restricts the therapeutic efficacy of gemcitabine (GEM) in pancreatic cancer treatment. Using immunohistochemical evaluation, we investigated that decreased expression of human equilibrative nucleoside transporter-1 (hENT1, which is the major GEM transporter across cell membranes) and increased expression of ribonucleotide reductase subunit 2 (RRM2, which decreases the cytotoxicity of GEM) was associated with low GEM chemosensitivity. To solve these problems, we employed a nanomedicine-based formulation of cationic liposomes for co-delivery of GEM along with siRNA targeti...
Source: Biomaterials - December 20, 2017 Category: Materials Science Authors: Zhao X, Wang X, Sun W, Cheng K, Qin H, Han X, Lin Y, Wang Y, Lang J, Zhao R, Zheng X, Zhao Y, Shi J, Hao J, Miao QR, Nie G, Ren H Tags: Biomaterials Source Type: research

Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in  vitro and in vivo.
Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. Biomaterials. 2017 Nov 14;155:112-123 Authors: Yu C, Ding B, Zhang X, Deng X, Deng K, Cheng Z, Xing B, Jin D, Ma P, Lin J Abstract Resistance to platinum agents is challenging in cancer treatment with platinum drugs. Such resistant cells prevent effective platinum accumulation intracellular and alter cellular adaptations to survive from cytotoxicity by regulating corresponding proteins expression. Ideal therapeutics should combine resolution to these pump ...
Source: Biomaterials - November 14, 2017 Category: Materials Science Authors: Yu C, Ding B, Zhang X, Deng X, Deng K, Cheng Z, Xing B, Jin D, Ma P, Lin J Tags: Biomaterials Source Type: research

Polymeric nanoparticles of siRNA prepared by a double-emulsion solvent-diffusion technique: Physicochemical properties, toxicity, biodistribution and efficacy in a mammary carcinoma mice model.
Abstract siRNA-loaded nanoparticles (NPs) administered systemically can overcome the poor stability and rapid elimination of free double-stranded RNA in circulation, resulting in increased tumor accumulation and efficacy. siRNA against osteopontin (siOPN), a protein involved in breast cancer development, was encapsulated in poly(D,L-lactic-co-glycolic acid) NPs by a double emulsion solvent diffusion (DESD) technique. We also compared the effect of polyethylenimine (PEI) molecular weight (800 Da and 25 kDa), used as the counter-ion for siRNA complexation, on the physicochemical properties of the NPs, cytotoxicity...
Source: Biomaterials - August 23, 2017 Category: Materials Science Authors: Ben David-Naim M, Grad E, Aizik G, Nordling-David MM, Moshel O, Granot Z, Golomb G Tags: Biomaterials Source Type: research

Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition.
This study suggests that enhanced tumor penetration of drug-carrying nanoparticles can enhance CSCs clearance in vivo and consequently provide superior anti-tumor effects. PMID: 26751819 [PubMed - as supplied by publisher]
Source: Biomaterials - December 21, 2015 Category: Materials Science Authors: Zuo ZQ, Chen KG, Yu XY, Zhao G, Shen S, Cao ZT, Luo YL, Wang YC, Wang J Tags: Biomaterials Source Type: research

Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing.
Abstract Nanomaterials-mediated photothermal therapy (PTT) often suffers from the fundamental cellular defense mechanism of heat shock response which leads to therapeutic resistance of cancer cells and reduces the therapeutic efficacy. Herein, a gold nanorods (GNRs)-siRNA platform with gene silencing capability is produced to improve the PTT efficiency. After surface modification, the GNRs show the ability to deliver siRNA oligos targeting BAG3 which is an efficient gene to block the heat-shock response. The synthesized GNRs-siRNA nanoplex exhibits excellent ability in the delivery of siRNA into cancer cells with ...
Source: Biomaterials - November 19, 2015 Category: Materials Science Authors: Wang BK, Yu XF, Wang JH, Li ZB, Li PH, Wang H, Song L, Chu PK, Li C Tags: Biomaterials Source Type: research