Exercise-induced peptide TAG-23 protects cardiomyocytes from reperfusion injury through regulating PKG –cCbl interaction
AbstractRecent studies have revealed that proper exercise can reduce the risk of chronic disease and is beneficial to the body. Peptides have been shown to play an important role in various pathological processes, including cardiovascular diseases. However, little is known about the role of exercise-induced peptides in cardiovascular disease. We aimed to explore the function and mechanism of TAG-23 peptide in reperfusion injury and oxidative stress. Treatment with TAG-23 peptide significantly improved cell viability, the mitochondrial membrane potential, and ROS levels and reduced LDH release, the apoptosis rate and caspas...
Source: Basic Research in Cardiology - June 25, 2021 Category: Cardiology Source Type: research

Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice
AbstractObtained from the right cell-type, mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) promote stroke recovery. Within this process, microvascular remodeling plays a central role. Herein, we evaluated the effects of MSC-sEVs on the proliferation, migration, and tube formation of human cerebral microvascular endothelial cells (hCMEC/D3) in vitro and on post-ischemic angiogenesis, brain remodeling and neurological recovery after middle cerebral artery occlusion (MCAO) in mice. In vitro, sEVs obtained from hypoxic (1% O2), but not ‘normoxic’ (21% O2) MSCs dose-dependently promoted endothelia...
Source: Basic Research in Cardiology - June 8, 2021 Category: Cardiology Source Type: research

Pathogenesis of arrhythmogenic cardiomyopathy: role of inflammation
AbstractArrhythmogenic cardiomyopathy (AC) is an inherited disease characterized by progressive breakdown of heart muscle, myocardial tissue death, and fibrofatty replacement. In most cases of AC, the primary lesion occurs in one of the genes encoding desmosomal proteins, disruption of which increases membrane fragility at the intercalated disc. Disrupted, exposed desmosomal proteins also serve as epitopes that can trigger an autoimmune reaction. Damage to cell membranes and autoimmunity provoke myocardial inflammation, a key feature in early stages of the disease. In several preclinical models, targeting inflammation has ...
Source: Basic Research in Cardiology - June 4, 2021 Category: Cardiology Source Type: research