Molecules, Vol. 27, Pages 2033: Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors

Molecules, Vol. 27, Pages 2033: Electrochemical Analysis of Sulfisoxazole Using Glassy Carbon Electrode (GCE) and MWCNTs/Rare Earth Oxide (CeO2 and Yb2O3) Modified-GCE Sensors Molecules doi: 10.3390/molecules27062033 Authors: Marwa El-Azazy Insharah Ahsan Nasr Bensalah In this work, new electrochemical sensors based on the modification of glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs)-rare metal oxides (REMO) nanocomposites were fabricated by drop-to-drop method of MWCNTs-REMO dispersion in ethanol. REMO nanoparticles were synthesized by precipitation followed by hydrothermal treatment at 180 °C in absence and presence of TritonTM X-100 surfactant. Cyclic voltammetry (CV) analysis using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE sensors were used for the analysis of sulfisoxazole (SFX) drug in water samples. The results of CV analysis showed that MWCNTs-REMO@GCE sensors have up to 40-fold higher sensitivity with CeO2 compared to the bare GCE sensor. The estimated values of the limit of detection (LoD) of this electrochemical sensing using MWCNTs-CeO2@GCE and MWCNTs-Yb2O3@GCE electrodes reached 0.4 and 0.7 mM SFX in phosphate buffer pH = 7, respectively. These findings indicate that MWCNTs-REMO@GCE electrodes are potential sensors for analysis of sulfonamide drugs in water and biological samples.
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research