Graphene for Zirconia and Titanium Composites in Dental Implants: Significance and Predictions

AbstractPurpose of ReviewGraphene is introduced in dentistry as a material to be used in the fabrication or coating of dental implants due to its biocompatibility, ability to physically interact with biomolecules and very high surface area. This review highlights the current knowledge on the general properties of graphene, potential benefits especially when used in zirconia-based implants, as composite materials and coatings.Recent FindingsThe literature reviewed showed a growing body of evidence supporting the use of graphene-based material, associated with titanium or zirconia as a coating or composite material that helps in cell viability, differentiation and proliferation, improving the bioactivity, osseointegration, physical, chemical and mechanical properties particularly zirconia. Graphene-based materials present great potential for biomedical applications especially when used in the form of nanostructured biological coatings that can be obtained through reproducible and economical processes.SummaryThe use of graphene as a composite implant material or coating may have great potential for osseointegration and bone regeneration, providing that, features including hydrophilicity, protein adsorption capacity, oxygen content and effect of external parameters such as temperature, pH and ionic strength need further elucidations before they can be implemented as a coating or composite material for dental implants.
Source: Current Oral Health Reports - Category: Dentistry Source Type: research