Molecular mechanisms underlying guanylin-induced transcellular Cl < sup > - < /sup > secretion into the intestinal lumen of seawater-acclimated eels

Gen Comp Endocrinol. 2022 Jan 31:113986. doi: 10.1016/j.ygcen.2022.113986. Online ahead of print.ABSTRACTGuanylin (GN) stimulates Cl- secretion into the intestinal lumen of seawater-acclimated eels, but the molecular mechanisms of transepithelial Cl- transport are still unknown. In Ussing chamber experiments, we confirmed that mucosal application of eel GN reversed intestinal serosa-negative potential difference, indicating Cl- secretion. Serosal application of DNDS or mucosal application of DPC inhibited the GN effect, but serosal application of bumetanide had no effect. Removal of HCO3- from the serosal fluid also inhibited the GN effect. In intestinal sac experiments, mucosal GN stimulated luminal secretion of both Cl- and Na+, which was blocked by serosal DNDS. These results suggest that Cl- is taken up at the serosal side by DNDS-sensitive anion exchanger (AE) coupled with Na+-HCO3- cotransporter (NBC) but not by Na+-K+-2Cl- cotransporter 1 (NKCC1), and Cl- is secreted by unknown DPC-sensitive Cl- channel (ClC) at the mucosal side. The transcriptomic analysis combined with qPCR showed low expression of NKCC1 gene and no upregulation of the gene after seawater transfer, while high expression of ClC2 gene and upregulation after seawater transfer. In addition, SO42- transporters (apical Slc26a3/6 and basolateral Slc26a1) are also candidates for transcellular Cl- secretion in exchange of luminal SO42. Na+ secretion could occur through a paracellular route, as Na+-leaky claud...
Source: General and Comparative Endocrinology - Category: Endocrinology Authors: Source Type: research